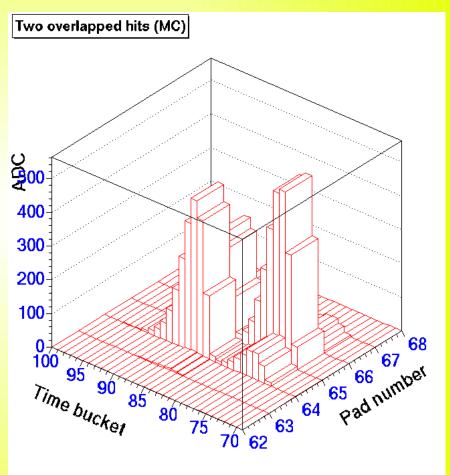
TPC Reconstruction

Andre Lebedev Harvard University

MIPP Collaboration Meeting FNAL Feb 8, 2003

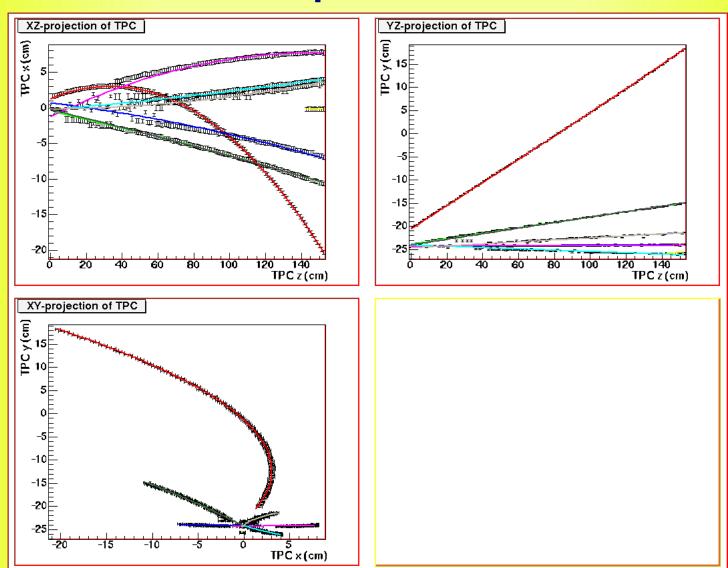
Overview


- E910 has a well-documented code, but they have very different underlying data structures, so direct porting is impossible
 - Excellent reference
- My overall approach: make it work first, take care of details later

Algorithm

- Create hit from raw digits
 - Create 1-D contiguous clusters of digits in the same pad of the same stick
 - Identify peaks within each cluster
 - Ideally, fit each peak with a gamma function (to do).
 - If it is too complicated, then do a weighted mean calculation for the center of the peak (default for now)
 - Group adjacent peaks into hits, calculate the xy-position of the hit by weighted mean

Algorithm (cont.)


- Form a network of hits in neighboring sticks
 - Look for "overlapping hits" in adjacent sticks, establish up- and down-links
- Feed the network into track finder

Algorithm (cont.)

- Form tracks
 - Start tracks downstream, and extend them upstream
 - An unused hit and its closest up-link start a track
 - A track is extended upstream if one of the above applies:
 - a) There is only one up-link
 - b) The tracker can choose the best up-link from a list
 - c) The tracker can jump over the gap or confusing set of links
 - Then the track is extended downstream, and procedure repeats until no more hits can be added

Sample Event

What is a TPC Track Object?

- List of hits
 - Position
 - Energy deposited
 - Length (over one stick)
- Momentum (from curvature)
- Average dE/dx (particle ID)
- Helicity (charge)

To Do List

- Implement gamma function fitting for peaks
- Correct hit positions due to non-uniform B-field
- Identify kinks in tracks (decay inside the volume)
- Calculate track momentum
 - Need B-field
- Calculate dE/dx for tracks
- Find vertices